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Monte Carlo study of the two-dimensional site-diluted dipolar Ising model
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By tempered Monte Carlo simulations, we study two-dimensional site-diluted dipolar Ising systems. Dipoles
are randomly placed on a fraction x of all L? sites in a square lattice and point along a common crystalline axis.
For x.<x=1, where x.=0.79(5), we find an antiferromagnetic phase below a temperature which vanishes as
x—x, from above. At lower values of x, we study (i) distributions of the spin glass (SG) overlap ¢, (ii) their
relative mean-square deviation A; and kurtosis, and (iii) & /L, where & is a SG correlation length. From their
variation with temperature and system size, we find that the paramagnetic phase covers the entire 7> 0 range.
Our results enable us to obtain an estimate of the critical exponent associated to the correlation length at T’

=0, 1/»=0.35(10).
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I. INTRODUCTION

In the last years, there has been a renewed interest in
systems of interacting dipoles (SIDs). This is in part due to
recent advances in nanoscience! which make realizations of
assemblies of magnetic nanoparticles available.>> Empiri-
cally, these systems show a rich collective behavior in which
the dipole-dipole interaction plays a key role that can be
observed at low (but experimentally accessible) tempera-
tures. Dipoles forming crystalline arrays exhibit long-range
ferromagnetic or antiferromagnetic (AF) order that depends
crucially on lattice geometry*> because of geometric frustra-
tion caused by the spatial variations in the directions of di-
polar fields. Two-dimensional (2D) arrays of cobalt-ferrite
and Co nanoparticles placed on hexagonal arrays have been
found to exhibit in-plane short-range ferromagnetic order.®
On the contrary, arrays on a square lattice composed of
MnAs ferromagnetic nanodisks epitaxially grown on a sub-
strate exhibit collinear AF patterns.’

Magnetic ordering of SIDs depends also on anisotropy.
On the one hand, dipolar-dipolar interactions create effective
anisotropies that in square lattices, for example, push spins to
lie on the plane of the lattice.> On the other hand, magneto-
crystalline site-anisotropy energies of the crystallites that
form the nanoparticles are often greater than dipolar-dipolar
interparticle energies. This is the case of the arrays of MnAs
ferromagnetic nanodisks we mention above that behave as a
system of Ising dipoles with their magnetic moment rigidly
aligned along the in-plane crystalline easy axes of the
nanodisks.” In such a case, the resulting magnetic order de-
pends on the competition of dipolar and anisotropic energies.
Crystalline Ising dipolar systems (IDSs) are reasonable mod-
els for these planar systems.” Some ferroelectrics,'” insulat-
ing magnetic salts as LiHoF,, as well as some three-
dimensional (3D) crystals of organometallic molecules'! are
known to be well described by arrays of IDSs.!?

SIDs in disordered spatial arrangements are particularly
interesting. The presence of spatial disorder, together with
the geometric frustration generated by dipolar interactions,
gives rise to random frustration that may result in spin-glass
(SG) behavior. In fact, some nonequilibrium SG behavior
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(like time-dependent susceptibilities and memory effects) has
been observed in experiments with systems of randomly
placed nanoparticles or very diluted magnetic crystals.!®!13
Furthermore, Monte Carlo (MC) simulations have given
clear evidence of the existence of a transition at finite tem-
perature Tg; from a paramagnetic to an equilibrium SG
phase in systems of randomly oriented axis dipoles (RADs)
placed either on fully occupied or on diluted simple-cubic
(SC) 3D lattices, and Tg;=0 instead for 2D square lattices.'*
Recent numerical work has reported a SG transition in a
model of parallel axis dipoles (PADs) placed on a lattice that
approximates that of the diluted'> LiHo,Y,_,F,, a material
for which such a transition has been reported'® (albeit not
without some controversy!’). By MC simulation the whole
phase diagram of site-diluted PADs placed on a 3D SC lat-
tice has been obtained'® as a function of the concentration x.
It includes a SG phase for 0 <x=0.65 which, strikingly, has
been found to behave marginally, that is, it has quasilong-
range order, as in the 2D XY model.!® This is to be compared
with theoretical and numerical results that indicate that 3D
SG systems with isotropic Ruderman-Kittel-Kasuya-Yosida
interactions® and one-dimensional Ising chains with power-
law decaying interactions’’ may behave as short-range
Edwards-Anderson (EA) models,?> which in 3D are believed
to have a SG phase with a nonvanishing order parameter
[according to the replica-symmetry-breaking (RSB) (Ref. 23)
or droplet?* pictures of SGs].

Then, in order to get a deeper understanding of SG sys-
tems beyond the already extensively studied random-bond
models with short-range interactions, it makes sense to ana-
lyze the behavior of the 2D PAD model and compare it with
the short-range 2D EA models. The latter had been found to
have an algebraic divergence at Tgg=0 with critical
exponent® 1/v=0.50(5), although more recent simulations
for larger systems and lower temperatures give a value of
1/v=0.29(4) for Gaussian interactions.?® A reminiscence of
this behavior has been found recently in a lattice Coulomb
glass model.?’

Our purpose is the study by MC simulations the phase
diagram of a site-diluted system of magnetic dipoles. They
are placed at random on the sites of a square lattice and point
up or down along a given principal axis. Since in the limit of
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low concentrations every detail of the lattice is expected to
become irrelevant,!® our results have direct connection with
some of the work we describe above. Our intention is to
search for the temperature 75 of a possible SG transition
and study the related divergence of the correlation length.
Further, we aim to study whether the diluted PAD model
belongs to the same universality class recently conjectured,”
though not reliably shown by MC simulations,? for the set
of 2D EA Ising models with varying quenched disorder.

The plan of the paper is as follows. In Sec. II we define
the model and give details on the parallel tempered MC
(TMC) algorithm®® used for updating. We also define the
quantities we calculate. They include the spin overlap?! ¢
and a correlation length?>3 £, . In Sec. III A we give results
for the dipolar AF phase for x>x,, where x,=0.79(5), as
well as for its nature and boundary. In Sec. III B, numerical
results are shown for distributions of ¢ and &;/L at x=0.2
and 0.5. We examine the evidence against the existence of a
finite temperature SG phase transition when x<<x.: (i) the
mean values {|g|) and (g?) decrease faster than algebraically
with L as L increases for T/x=0.3, (ii) double peaked, but
wide, distributions of ¢/{|g|) change with L for temperatures
as low as T/x=0.4, and (iii) kurtosis and &;/L decrease with
L at all T and do not cross, as it would be expected for a
finite temperature transition. Scaling plots for g and &;/L are
given in Sec. III C. Our results are consistent with a ratio
& /L that diverges with exponent 1/v=0.35(10). Results are
summarized in Sec. IV.

II. MODEL, METHOD, AND MEASURED QUANTITIES
A. Model

We treat site-diluted systems of Ising magnetic dipoles
(also named spins in this paper) on a 2D square lattice. At
each lattice site a dipole is placed with probability x. Then,
the average number N of spins on the lattice is less than L?
(L is the lateral size of the lattice) approximately by a factor
x. Site i is said occupied if it contains one spin. All dipoles
are parallel and point along the Y axis of the lattice. This axis
shall be called spin axis. The Hamiltonian is given by

1
H=EE Tjo,0;, (1)
i#j
where the sum runs over all occupied sites i and j except i
=j, 0;=* 1 on any occupied site i and

Ty = ealalry) (1= 3y}/ry). (2)

If r;; is the vector joining sites i and j, then ry=|r|| is its
modulus and y;; its ¥ component. g, is an energy and a is the
lattice spacing. In the following all temperatures and ener-
gies shall be given, respectively, in units of e,/kg (kg is the
Boltzmann constant) and &,. Due to the long-range nature of
the dipolar interactions, we are able to simulate on rather
small lattice sizes (L=32).

Strength T}; is the usual long-range dipole-dipole interac-
tion. Note that 7;; signs are not distributed at random but
depend on the orientation of r;; vectors on the lattice. Ran-

domness in our model arises only through the introduction of
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the probability x for placing dipoles. This is to be contrasted
with random-bond EA Ising models with bond strengths J;;
:sij/rf;, where g;; are chosen at random from a bimodal or
Gaussian distribution with zero mean®!' and u is a real expo-
nent. This is why PADs exhibit AF order at high concentra-
tion in contrast to these models that do not. Similar state-
ments apply when our PAD model is compared with a
random axes dipolar model in which Ising dipoles lie along
directions chosen at random for each site.'*

B. Method

Periodic boundary conditions are imposed. Spins on oc-
cupied sites i have been allowed to interact only with spins j
within an L X L squared box centered on site i. This method
unambiguously defines the vector r;; to be used in Eq. (2)
and also excludes interactions with spins belonging to the
repeated copies of the lattice that appear beyond the bound-
ary. Because of the long-range nature of dipolar interactions,
contributions from beyond this box would have been taken
into account, for example, by means of Ewald’s
summations.’* The contribution from such sums has been
shown to vanish in the thermodynamic limit if the system is
not in a ferromagnetic phase or close to its Curie temperature
(see Appendix A in Ref. 18). In all simulations presented in
this work we have found Tyxy=<1 (where y is a ferromag-
netic susceptibility). Therefore those contributions do not af-
fect the thermodynamic limit regardless of whether the sys-
tem is in the paramagnetic, AF, or SG phase.

In order to circumvent large energy barriers that could
slow down the evolution of the system, in particular, from
certain states representing minima of the energy (mainly at
low temperatures), we have used the TMC algorithm.’® It
consists in running in parallel a set of n identical systems at
equally spaced temperatures T;, given by T;=T,—(i—1)AT
(i=1,...,n and AT>0) where each system i is cyclically
allowed to exchange its state with system i+ 1. Each system
evolves independently by use of the standard single-spin-flip
Metropolis algorithm®* and whenever a single flip is ac-
cepted, all dipolar fields throughout the entire lattice are up-
dated.

In detail the procedure is as follows:'*!8 (1) a cycle on i is
run from i=1 to i=n; (2) when the cycle arrives at system i,
eight Metropolis sweeps over the lattice are applied on it; (3)
next, a chance is given to systems i and i+1 to exchange
their configurations (note that at this moment system i+ 1 has
undergone eight Metropolis sweeps less than system i). The
exchange is accepted with probability Pryc=1 if SE=E;
—E; ;<0 or Pryc=exp(—ABSE) otherwise. Here E; is the
numerical value of Hamiltonian (1) for system i and AB
=1/T;,—1/T;; (4) eight Metropolis sweeps are applied on
system i+ 1 (regardless of the fact that the previous exchange
have or have not been performed); (5) the above exchange is
tried between systems i+ 1 and i+2; (6) the cycle ends with
the eight Metropolis sweeps for i=n, after which no configu-
ration exchange is tried.

Since'® in 3D Tg~x and the purpose of TMC is to over-
come energy barriers that could be as high as Tyg, then we
found necessary to choose the highest temperature 7 = 2x. It
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TABLE I. Simulation parameters. x is the probability for sites to be occupied with a magnetic dipole; L
is the lateral lattice size; AT is the temperature step in the TMC runs; 7} and T, are the highest and lowest
temperatures, respectively; N, is the number of pairs of quenched disordered samples; and ¢, is the number of
MC sweeps. The measuring time interval is [7,27,] in all cases.

L 8 12 16 20 24 32
T, 0.04 0.04 0.04 0.04 0.04 0.08
N, 2400 550 1500 650 700 200

x=0.5, AT=0.05, T,=2, T,,=0.1, t,=8 X 10°
L 8 16 20 24
N, 2500 2500 350 250

x=0.6, T,,=0.2, ty=4 X 10°
L 8 16 20 24
T 3 3 2 2
AT 0.2 0.2 0.1 0.1
N, 1200 300 300 300
x=0.7, AT=0.1, T,=2, T,=0.2
L 8 16 20 24
t 8 X 10° 8 X 10° 4100 4x10°
N, 4200 2200 400 100
x=0.8, AT=0.1, T,=3, T,=0.2

L 8 16 20 24
% 8 X 10° 8 X 10° 4100 4x10°
N, 4500 1200 500 350

x=0.86, AT=0.1, T,=3, T,=0.2, t,=8 X 10°
L 8 16 20 24
N, 3000 400 300 70

x=0.9, AT=0.1, T,=3, T,=0.2, 1,=8 X 10°
L 8 16 20 24
N, 2000 250 250 800

x=0.2, AT=0.02, T,=0.6, ty=4 X 107

is also important to take AT small enough to allow frequent
state exchﬂges between systems. This is fulfilled by taking
AT=T/c¢,N, where ¢, is the specific heat per spin. We
choose appropriate values for AT from inspection of plots
(not shown) of the specific heat vs T in preliminary simula-
tions of the smaller systems.'® Some recent work on how to
choose these temperatures in a more optimal way may be
found in Ref. 35.

Initially the n configurations were completely disordered.
For details on how we chose equilibration times #, see Sec.
II C. Time ¢, is particularly large outside the AF region, vary-
ing from at least 4 X 10 MC sweeps for x=0.7 and a number
of dipoles N=300 up to 4 X 107 sweeps for x=0.2 and N
=200. Instead, #, in the AF zone is as low as 8 X 10° for x
=0.86. Thermal averages were calculated over the time
range [1y,2f,]. We further averaged over N, samples with
different realizations of disorder. In our simulations samples

evolve independently in time with different sequences of ran-
dom numbers. Errors were computed from sample-to-sample
fluctuations. Each realization was run twice to permit the
calculation of overlapping parameters (see Sec. II C). Values
of the parameters for all TMC runs are given in Table I. As a
result, error bars in the figures shown in this paper are always
smaller than symbol sizes used therein.

C. Measured quantities

Measurements were performed after two averagings: first
over thermalized configurations and second over different
realizations of the quenched disorder. We find appropriate to
define a staggered magnetization as

m= N_IE (- 1)ioy, (3)

1

where x; is the X coordinate of site i. This magnetization
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FIG. 1. (Color online) Semilog plots of g,(y,t) and g, vs time ¢
(in MC sweeps) for systems of 24 X 24 sites and concentration x
=0.5 at the values of T shown in the legend. Here, g, comes from
averages over time, starting from an initial random spin configura-
tion at #=0. Here #,=8 X 10® MC sweeps. Data points at time ¢ from
an average over the time interval [7,1.27] and over 500 system
samples.

characterizes a so-called antiferromagnetic order in which
spins point up along parallel lines with alternate signs.’

We calculated the probability distribution P(m), as well as
the moments m, =(|m|), my=(m?), and m,=(m*), where (- --)
stands for the above-defined double averages. From these
moments we calculated the kurtosis (known also as Binder’s
cumulant) of P(m) as gm:(3—m4/m§)/2. All these quantities
have proven to be good signatures for possible AF-
paramagnetic phase transitions.

In order to look for SG behavior, we also calculated the
Edwards-Anderson overlap parameter between two indepen-
dent equilibrium configurations obtained from a pair of iden-
tical replicas evolving independently in time,3!

4=N"2 ¢;, (4)

where
¢;=0\Val?, (5)

o'V and ¢ being the spins on site j of replicas labeled as
(1) and (2). Clearly, ¢ is a measure of the spin configuration
overlap between the two replicas. As done for m, we also
calculated the probability distribution P(g) as well as the
moments q,={|q|), ¢=(¢%), and q,=(g*). The SG suscepti-
bility x5 is given by Ng,. Finally, we also make use of the
relative mean-square deviation of g, A;:qz/ q%— 1, and kur-
tosis g=(3-q4/q3)/2.

Let us explain now how #, was extracted. To make sure
that equilibrium was reached, plots of ¢, and energy (average
of H) were made over time intervals [7,1.2¢], not starting at
t=ty, as we do everywhere else, but starting at t=0, from an
initial random spin configuration. Semilog plots of ¢, versus
t displayed in Fig. 1 for x=0.5, L=24 and low temperatures
show that a stationary state is reached only after some mil-
lions of MC sweeps. In order to check whether this state is
truly in equilibrium, we define a time-dependent spin overlap
g not among pairs of identical systems but among spin con-
figurations of the same system at two different times #;, and
t,=ty+t of the same TMC run,’®
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q(to,t) = N_lz ai(t))ojlty+1), (6)
j

where the initial time 7, is an equilibration time. Note that ¢
in Eq. (6) is a time measured after f,. Let g,(ty,1)
=([g(ty,1)]*), where (:--) stands for a double average over
time intervals [, 1.2¢] and over independent replicas. Then,
G>(tg:1) — g, as t—1q.

Plots of G,(ty,1) vs t, for 107t,<t<t, and t,=8 X 10°
MC sweeps, are shown in Fig. 1. Note that both quantities,
g, and §, become approximately equal when r=10° MC
sweeps. In order to obtain equilibrium results, we have al-
ways chosen sufficiently large values of ¢, to make sure that,
within errors, g,(y,1)=q, for t=t,. All values of 7, are given
in Table I.

In addition, we calculated a so-called correlation length
for finite systems,

1 0 1/2
b= S Sin(ki2) { a0 ™ 1} ’ @
where
k=|k|, ¢k)= N-IZ bie™ i, (8)
J

r; is the position of site j, and k=(27/L,0). Recall that this
system is anisotropic, as interactions along the spin axis are
twice as large as in the perpendicular direction. Then, one
could define a correlation length along the Y axis, &, by
choosing k=(0,27/L). We have found that £, ; is more con-
venient because it is less affected by finite-size effects than
&1~ In order to make a rough comparison with similar quan-
tities defined for isotropic systems like the short-range 2D
EA Ising model, we define also & =(& ,+&,,)/ 2.37 In con-
trast to P(g) and its first moments, & takes into account
spatial variations in the EA overlap ¢ and shows a good
signature of SG transition. Its use has become customary in
recent SG work.??3? Analogous expressions define the AF
correlation length §(L’”) by substituting ¢; for ;=(-1)%0; in
Egs. (7) and (8).

It is worth mentioning that in the & /L— 0 limit, & is, up
to a multiplicative constant, the spatial correlation length of
(pyb,). Therefore in the paramagnetic phase we can think of
&, the L— 0 limit of &, as the true correlation length of a
macroscopic system. On the contrary, if there is strong long-
range order with short-range-order fluctuations (as predicted
for the droplet model** for 3D SGs), g, # 0 (that is, {¢yeb,)
does not vanish as r— ) and {(Pye,)—{dy){®,) would be
short range. It then follows from its definition, Eq. (7), that
& ~L?*in 2D. Following current usage, we shall nevertheless
refer to &; as the “correlation length.”

III. RESULTS
A. AF phase

The phase diagram shown in Fig. 2 summarizes our main
results for the diluted 2D PAD model. For x>x, we find a
thermally driven transition between the paramagnetic and AF
phases at a Néel temperature Ty(x) that vanishes as x— x,
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FIG. 2. (Color online) Phase diagram of the 2D PAD model. O
stand for the Néel temperature 7y and X for temperatures below
which we cannot completely rule out a SG phase (see Sec. III). The
full line for the phase boundary between the paramagnetic and AF
phases is a fit to the data points given by Thp=4.5(x—x,)""?, where
x.=0.79. In the inset, m; versus x for 7=0.2. O, [J, ¢, and A stand
for L=24, 20, 16, and 8, respectively.

from above. The phase boundary meets the 7=0 line at x,
=0.79. For concentrations well below x,. the paramagnetic
phase covers the whole range 7= 0. We do not find evidence
of a SG phase at finite temperature. However, our results are
consistent with a SG correlation length that diverges algebra-
ically near or at T5g=0. In the following we report the nu-
merical evidence on which these qualitative results are
based.

First we focus our attention on the paramagnetic-AF
transition.’® The AF phase is defined by the staggered mag-
netization [Eq. (3)]. We illustrate in Fig. 3(a) how the mo-
ment of staggered magnetization m, behaves with tempera-
ture for x=0.7. Note that m, appears to decrease as L
increases even at low T. Plots of m, versus L (not shown)
indicate a faster than algebraic decay in L, as one expects for
a non-AF phase. This is in sharp contrast to the behavior of
m, for x=0.86 [see Fig. 3(b)]. Curves for different L cross at
Ty=1.15. Below this temperature m, increases with L indi-
cating the existence of an ordered AF phase. Similar results
are obtained for higher values of x. In the inset of Fig. 2,
plots of m; versus x for different system sizes at low tem-
perature show that the system exhibits AF order for x=0.8.
Similar graphs were obtained for m,. These are our first
pieces of evidence for the existence of an AF phase above
x.~0.8. It is instructive to compare the behavior of m, with
that of ¢, shown for x=0.86 in Figs. 3(b) and 3(d). m, and ¢,
are not qualitatively different. This is not so for x=0.7 where
there is no AF order [compare Figs. 3(a) and 3(c)]. From Fig.
3(c) it is not obvious whether g, vanishes or not as L in-
creases at very low temperatures. We will return to this point
in the discussion of Fig. 5.

For further information about the extent of the AF phase,
we also examine how the cumulantlike quantity g,, and the
finite-size AF correlation length behave for several pairs of
values x and 7. Let us first outline how g,, is expected to
behave in the various magnetic phases. It clearly follows
from its definition that g,,— 1 as L—° in the case of long-
range AF order. From the law of large numbers it also fol-
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FIG. 3. (Color online) (a) Squared staggered magnetization m,
vs T for x=0.7. Icons O, O, &, and A stand for L=24, 20, 16, and
8, respectively. Lines are only guides to the eye. Note that m, de-
creases with L at all temperatures consistently with absence of AF
order. (b) Same as in (a) but for x=0.86. Note that m, grows with L
at low temperature, indicating an AF phase. (c) Same as in (a) but
for the SG overlap parameter ¢,. (d) Same as in (c) but for x
=0.86. Direct comparison of curves shown in panels (b) and (d) for
x=0.86 indicate a coupling between m, and ¢,. This coupling does
not occur for x=0.7 [see panels (a) and (c)].

lows that g,,— 0 as L— o in the paramagnetic phase. These
two statements imply that curves of g, vs T for various
values of L cross at the phase boundary between the para-
magnetic and AF phases. We make use of this fact to quan-
titatively determine the paramagnetic-AF phase boundary.
Plots of g,, vs T are shown in the insets of Figs. 4(a) and 4(b)
for x=0.8 and 0.86, respectively. The signature of an AF
phase below T=1.2 is clear for x=0.86. The inset of Fig.
4(a) shows that within errors curves of g,, vs T for x=0.8 and
different system sizes merge instead of crossing at and below
T=0.5(1). Note also that g,, does not go to 1 as T—0, indi-
cating a broad distribution of P(m) even in this limit. Finally,
for x<x, (see Sec. IIl B), we find that g,, decreases as L
increases for all 7 which is consistent with the absence of AF
in this region.

W77 717 % T T " T3
E 1 I 1 ]
[ ] 1t ] 1
L of i of i
2 1F =+ 1=
g3 f ¥ 035 I] ' 1|5 ]
o 1 ST ]
0.1 - = 3
E i E (b) x=0.86 3
s R R R
0 05 1 15 1 15 2
T T

FIG. 4. (Color online) (a) Semilog plots of fi"’g/ L versus T for
x=0.8, and L=24 (O), L=20 (0), L=16 (<), and L=8 (A). In the
inset, kurtosis of the m distribution versus 7T for the same values of
x and system sizes. (b) Same as in (a) but for x=0.86.
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In recent literature on SG phases the scale invariant finite-
size correlation length® is frequently used to give evidence
for a finite temperature transition since &;/L crosses at the
transition temperature Ty and spreads out above and below
Ty. The advantange of &;/L over kurtosis is that the former
may even diverge as L— o in contrast to the latter that tends
to 1. Then we use the AF correlation length §<L’")/ L to pin-
point values for 7y by the value of T where curves cross.
Recall that &™) becomes a true correlation length when
§(Lm)/L< 1. Then, in the paramagnetic phase, &™/L
~ O(1/L), therefore decreasing as L increases. At Ty, §§'")/ L
must become size independent, as expected for a scale-free
quantity. At lower temperatures, well in the long-range AF
phase, we expect &")/L~ O(L). Plots of £™)/L versus T are
shown in Figs. 4(a) and 4(b) for x=0.8 and 0.86, respec-
tively. Note that curves spread out above and below Ty
=1.20(5) for x=0.86. Similar graphs for x=0.9 allow one to
obtain the value Ty=1.50(5).

On the other hand curves merge for all temperatures be-
low T=0.5(1) for x=0.8 and L=16 [see Fig. 4(a)] while m,
decreases, within errors, algebraically with L for the studied
system sizes (not shown). It is interesting to note that graphs
of the SG quantities g and &; /L (instead of g,, and the AF

L’”)/ L) give qualitatively the same picture when plotted ver-
sus T except from the fact that g— 1 as T— 0 for all x. Thus,
the most straightforward interpretation of the data shown in
Fig. 4(a) is that for all temperatures below T=0.5 the system
is near or at the AF phase boundary and its behavior displays
criticality.

We have thus established all points of the AF phase
boundary shown in Fig. 2 for x>0.7. A fit to these data
points, given by Ty=4.5(x—x,)"?, where x.=0.79(5) is
shown in Fig. 2. This fit become appreciably worse when
values of x, lie outside the interval [0.75,0.85]. Finally, for
x=0.7 (see below) we find that §(L’")/L decreases as L in-
creases for all 7, as expected.

B. Very diluted systems

This section is devoted to show the numerical results
drawn for distributions of ¢ and their first moments, and for
& for systems with weak concentration. As for 3D PADs,'8
we expect universal behavior for x<<1 which enables us to
compare our results with previous work. Thus, we direct our
attention on the results we have obtained for x=0.2 and x
=0.5. Both values are well below the x=x,=0.79 region in
which AF appears at low temperatures.

A plot of g, versus T for x=0.7 is shown in Fig. 3(c).
Qualitatively similar graphs are obtained for other values of
x satisfying x=x,.. Note that g, decreases as L increases,
even at low temperatures. It is difficult to deduce from these
plots whether or not ¢, vanishes as L— at low 7. In order
to elucidate this question we prepare log-log plots of g, vs L,
shown in Figs. 5(a) and 5(b) for x=0.2 and 0.5 respectively.
Data points in these figures seem to be consistent with a
decay faster than ¢,~L~7 for T/x=0.3, indicating that we
are in the paramagnetic phase. Plots of g; vs L show the
same qualitative behavior. Altogether these results leave
small room for the existence of a SG phase with quasilong-
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FIG. 5. (Color online) (a) Plots of g, versus L for x=0.2. O, [J,
O, AV, <, @, and X stand for 7/x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0, respectively. Lines are to guide the eye. Clearly,
data for 7/x=0.4 deviate from the straight dashed lines implying
faster than a power of 1/L decay. (b) Same as in (a) but for x
=0.5. Here, only data for 7/x=0.7 decay faster than a power of
1/L. For all data, we have checked that, within errors, g,=¢5.

range order at very low temperatures, as it has been reported
for the 3D diluted PAD model for 7/x=1.

Next we report results for the distributions of m and ¢ at
low temperature. Due to the central limit theorem and since
the correlation lengths are finite in the paramagnetic phase,
P(m) and P(q) are expected to be normal distributions for
L=o when rescaling m (q) by m/m; (q/q;). The droplet
picture?* for SGs predicts that P(q)=[ 8g+qo)+ 8g—qo)]/2,
where ¢ is the EA order parameter, and that the tail of P(g)
down to ¢g=0 for finite-size systems vanishes as L increases.
On the contrary, the RSB picture®® predicts a nontrivial dis-
tribution with a nonvanishing P(¢=0) which is size indepen-
dent. Plots of P(g) and P(m) are shown for x=0.2 and x
=0.5 for T/x=0.4 in Figs. 6(a)-6(c). All distributions depend
on L. P(m) are found to be normally distributed. In Figs. 6(b)
and 6(d) normalized distributions of the reduced quantity
m'=m/m, are shown. Note that P(m')=(1/m)exp
(-=m'?/m) for the studied system sizes, indicating complete
absence of AF order. On the other hand, P(g) are found to be
double peaked distributions [see Figs. 6(a)-6(c)]. As L in-
creases, their peak positions shift toward g=0 and P(0) in-
creases. Neither the droplet nor the RSB models consent a fit
to these data. If it turns out that our systems are near or at
criticality, then P(q') (where ¢’ =¢/g;) ought to be size in-
dependent. However, reduced distributions P(q’) in Figs.
6(b)—6(d) are shown to have an L dependence. We conclude
that our results are only consistent with a paramagnetic
phase. Similar conclusions apply for 7/x=0.2.

In the same way as explained in Sec. IIT A for quantities
g,, and §(L’")/ L, their dimensionless SG counterparts g and
& /L, as well as Az, indicate the location of the temperature
Tsg of a SG transition. Recall that, according to the finite-
size scaling assumption, all these quantities depend only on
L(T-Tgg)? and then become size independent at Tgg. We are
assuming that for large enough sizes, L/ & (where £ is the true
correlation length) is the only relevant parameter and &

064425-6



MONTE CARLO STUDY OF THE TWO-DIMENSIONAL...

T I T I T I T T I I T
(a) x=0.2 (b)—: 1.0
A i 1~
———————— 0.1
() [x=0.5] (d)1
[ lFg 8410
o I ] ~
1 1 1 l l 1 0.1
-1 05 0 05 2 -1 12
q, m q’, m’

FIG. 6. (Color online) (a) Plots of the probability distributions
P(q) versus g, and P(m) versus m both for x=0.2 and T/x=0.4. O,
0, and < are for P(g) and system sizes L=32, 24, and 20, respec-
tively. A, V, and X are for P(m) and system sizes L=24, 20, and
16, respectively. (b) Same as in (a) but for the scaled distributions
P(q') versus q'=q/q,, and P(m') versus m'=m/m,. The thick
dashed line corresponds to the Gaussian distribution of paramagnets
in the macroscopic limit. (c) Same as in (a) but for x=0.5 and
T/x=0.4. O, OO, and ¢ are for P(g) and system sizes L=24, 20,
and 16, respectively. A, V, and X are for P(q) and system sizes
L=24, 20, and 16, respectively. (d) Same as in (b) but for x=0.5 and
T/x=0.4.

~(T-Tsg)™". Plots of g vs T/x are given in Figs. 7(a) and
7(b) for x=0.2 and 0.5, respectively. It seems that curves of g
for various values of L do not cross and only merge as T
— 0. This is consistent with T5G=0 in accordance with the
behavior of 2D EA systems, although a merging at 7/x
~(.2 is not completely excluded within errors. We found
more useful to study A;, which has a direct interpretation as
the uncertainty of g/¢q; and could be computed with higher
precision as it involves lower moments of'* P(g). A plot of
A% vs T/x for x=0.2 is shown in the inset of Fig. 7(a).
Clearly, Af] increases with L for all 7/x=0.2 as expected for
a paramagnetic phase and contrary to the expected behavior
A3HO for increasing L in a SG phase with nonvanishing
order parameter. A similar behavior for x=0.5 is observed
(not shown).

We now turn our interest to the behavior of the SG finite-
size correlation length &; /L. Similarly to g, & /L is indepen-
dent of L at Tgg as it corresponds to be for a scale-free
quantity. On the other hand, well inside the paramagnetic
phase, & /L should diminish as O(1/L), provided & /L<1.
Figures 8(a) and 8(b) show data for &, ; as a function of 7/x
for several system sizes for x=0.2 and 0.5, respectively.
Curves do not cross at any finite temperature and &, ;/L de-
crease as L increases at least for 7/x=0.4. All curves seem
to converge only as 7— 0 suggesting Tsg=0. Plots for &, ; vs
L [see inset of Fig. 8(a)] are consistent with an algebraic
decay & /L~ L™ for temperatures 7/x=0.4 and system
sizes L=16. For lower temperatures, data do not vary very
much as L increases and so we cannot definitely rule out a
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FIG. 7. (Color online) Kurtosis g of the distribution of g versus
T/x for x=0.2. @, O, [, A, and ¢ stand for system sizes L=32,
24, 20, 16, and 8, respectively. In the inset, semilog plot of the
relative mean-square deviation A2 versus T/x for the same x and
system sizes. Lines are guides to the eye. (b) Same as in (a) but for
x=0.5. 0O, 0, A, and ¢ stand for L=24, 20 16, and 8, respectively.
In the inset, scaling plot [g as a function of (7/x)L""] of the data
shown in the main figure.

nonvanishing &, ,/L in the thermodynamic limit. Conse-
quently, from Fig. 8 alone, a transition at very low, but not
zero, temperature cannot be completely excluded.

1.0 et

A
]
O

A
0
O
PRI R R R T T R N

0 0.5

i

T/x

FIG. 8. (Color online) (a) Semilog plots of (a) SG correlation
length divided by system size &, ,/L versus T/x for x=0.2, and L
=32 (@), L=24 (O), L=20 (O), L=16 (A), L=12 (0), and L=8
(X). Lines are guides to the eye. (b) Same as in (a) but for x
=0.5, and L=24 (O), L=20 (0), L=16 (A), and L=8 (<). In the
inset of (a), log-log plot of &, ;/L versus 1/L for x=0.2. O, O, O,
A, @, <, X, and B stand for 7/x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and 1.0, respectively.
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FIG. 9. (Color online) (a) Kurtosis g as a function of the finite-
size correlation length divided by system size, & /L for x=0.2. @,
O, O, ¢, and A stand for L=32, 24, 20, 16, and 12, respectively.
All data should collapse onto a single curve, provided that scaling
corrections are small. The thick continuous line stands for the com-
mon curve that corresponds to the 2D Ising SG models for both
Gaussian and bimodally distributed short-range interactions. (b)
Same as in (a) but for x=0.5. O, [0, ¢, and A stand for system
sizes L=24, 20 16, and 8, respectively.

C. v exponent at Tg;=0

Our results concur with the behavior found for a random-
bond 2D RAD model with dipolar interactions'* and the one
found time ago for 2D EA models.?> Recent simulations for
the latter (with larger system sizes and lower T) including
nearest-neighbor exchange interactions find a lower value
1/v=0.29(4) for Gaussian distributions® but do not provide
conclusive results for bimodally distributed interactions.?® It
is worth mentioning that exponent —1/v at T=0 is directly
related to the stiffness exponent 6 as #=—1/v of the ground
state. This ground state has been found strongly degenerated
for bimodal interactions, which is not the case neither for
Gaussian interactions nor presumably for diluted systems
with dipolar interactions. A scenario has been proposed
where these 2D EA models with varying realizations of dis-
order belong to the same universality class at nonzero
temperatures,”® even though their respective values of @ dif-
fer at 7=0.

Let us assume that T5g=0 and that ¢ diverges as E~T7".
According to finite-size scaling, dimensionless quantities like
g and &; /L should scale as

g=G(TL"), ¢&/L=X(TL""). )
It follows that g=F(&; /L), where F is in principle a nonuni-
versal function that, apart from the bulk universality class,
depends on the boundary conditions (we chose them to be
periodic), the sample shapes (squared lattices), as well as the
anisotropy>® of the interactions. Plots of g versus & /L are
shown in Figs. 9(a) and 9(b) for x=0.2 and 0.5, respectively.
Data for different values of L and x should collapse into a
single scaling curve, on condition that finite-size effects are
small. This is what we find for systems with N=100. How-
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FIG. 10. (Color online) (a) Scaling plot for the SG correlation
length divided by system size, & ;/L versus (T/x)L"" with 1/v
=0.35 for x=0.2. @, O, [, and A are for L=32, 24, 20, and 16,
respectively. (b) Same as in (a) but for x=0.5. O, [, A, and ¢ are
for L=24, 20, 16, and 8, respectively. Error bars, where not shown,
are smaller than symbols.

ever, for smaller N curves spread out indicating that finite-
size scaling corrections are large. It is remarkable that data
seems to collapse onto the scaling curve shared by the iso-
tropic 2D EA models mentioned above in this section (see
Fig. 10 of Ref. 29), especially at low T. Note that in Figs.
9(a) and 9(b) we use &;/L instead of & ;/L in order to aver-
age anisotropic effects over the two principal axes of the
underlying square lattice. This suggests that both, 2D PAD
and short-range EA models, may share a common universal-
ity class. However, large correlations to scaling for the avail-
able system sizes prevent us to go further on this direction.

Scaling plots of &, ; /L versus (7/x)L"" are shown in Figs.
10(a) and 10(b) for x=0.2 and x=0.5, respectively. Due to
the presence of large finite-size corrections, no value of 1/v
allows to collapse all data in one single curve We have cho-
sen 1/ in order to allow data collapse for large L and low 7.
We find that 1/v=0.35 is a suitable value in both cases.
Scaling plots become significantly worse (not shown) when
using values of 1/» outside the interval [0.25,0.45]
([0.3,0.4]) for x=0.2 (x=0.5). That gives a rough estimate of
the error on 1/v. A scaling plot of g versus (T/x)L'" is
shown in the inset of Fig. 7(b) for x=0.5. Again, 1/v
=0.35(10) allows to scale data for large L and low T, which
is consistent with the value extracted from &, ;/L. The value
1/v=0.35(10) also agrees with the effective exponent found
in old simulations of the 2D EA model for small system sizes
and relatively high temperatures and is slightly larger than
the value 1/v=0.29(4) found in recent simulations for the
same models (but the two values are still consistent within
errors). In any case, such discrepancies may be caused by the
fact that finite-size scaling corrections are important for the
limited system sizes that we were able to simulate.

IV. CONCLUSIONS

By tempered Monte Carlo calculations, we have studied a
diluted dipolar Ising model on a square lattice. There are
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only dipole-dipole interactions. Spins randomly occupy only
a fraction x of all lattice sites. The entire phase diagram of
the system, in particular, the boundary between the AF and
the paramagnetic phases, has been explored and it is shown
in Fig. 2. We have also provided strong evidence that the
paramagnetic phase covers the whole 7> 0 range for x<x,,
where x,=0.79(5). From the behavior of the SG overlap ¢,
the relative mean-square deviation Ai, kurtosis g, and & /L,
we conclude that T5=0 for x<<x_, and there is an algebraic
divergence of the correlation length with an exponent 1/v
=0.35(10). All these properties are consistent with the behav-
ior found for the 2D diluted RAD and 2D EA model with
short-range interactions. This is to be contrasted with the

PHYSICAL REVIEW B 82, 064425 (2010)

manifestly different behavior found for the 3D PAD
(quasilong-range order at low T) and the 3D EA model (with
a nonvanishing order parameter in the SG phase).
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